Critical role of a hydrogen bond in the interaction of phospholipase A2 with transition-state and substrate analogues.

نویسندگان

  • L Yu
  • E A Dennis
چکیده

The inhibition of phospholipase A2 by an amide substrate analogue, 1-hexadecylthio-2-hexadecanoyl-amino-1,2-dideoxy-sn-glycero-3-phos phocholine, and a phosphonate transition-state analogue, 1-hexadecylthio-1-deoxy-2-hexadecylphosphono-sn-glycero-3-ph osphocholine, is dramatically influenced by pH. However, these two inhibitors show opposite pH dependencies. The amide analogue acts more potently under basic conditions, whereas the phosphonate acts more potently under acidic conditions. In both cases, ligand binding is perturbed by protonation of an enzyme functional group with an apparent pKa of 6.1, which corresponds to that of a histidine residue. Thus, His-48, which has previously been implicated in catalysis, appears to be critically involved in the hydrogen bond interactions between the enzyme and these two inhibitors. The amide analogue binds most effectively to the enzyme when His-48 is deprotonated. Upon protonation of the histidine residue, the amide cannot form a critical hydrogen bond and loses its ability to interact effectively with the enzyme. In contrast, the phosphonate analogue binds much tighter to the protonated form of the enzyme than to the deprotonated form. The phosphonate analogue needs a bridging hydrogen between the oxygen on its phosphorus atom and the N delta 1 of His-48 to form a strong hydrogen bond. At optimal pH values for inhibitor binding, both the amide and the phosphonate analogues are potent competitive inhibitors of cobra (Naja naja naja) venom phospholipase A2. The IC50 for the amide was 4.4 x 10(-4) mol fraction and for the phosphonate was 1.6 x 10(-5) mol fraction. Under the experimental conditions used, this corresponds to a bulk concentration of 2 microM and 70 nM, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The interaction of phospholipase A2 with phospholipid analogues and inhibitors.

A series of structurally modified phospholipids have been used to delineate the structural features involved in the interaction between cobra venom (Naja naja naja) phospholipase A2 and its substrate. Special emphasis has been placed on sn-2 amide analogues of the phospholipids. These studies have led to a very potent, reversible phospholipase A2 inhibitor. A six-step synthesis of this compound...

متن کامل

Human plasma lecithin-cholesterol acyltransferase. Inhibition of the phospholipase A2-like activity by sn-2-difluoroketone phosphatidylcholine analogues.

Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the sn-2-fatty acid of lecithin to cholesterol, forming lysolecithin and cholesteryl ester. We have recently proposed a covalent catalytic mechanism for LCAT in which lecithin cleavage proceeds via the formation of a transition state tetrahedral adduct between the oxygen atom of the catalytic se...

متن کامل

Function of the fully conserved residues Asp99, Tyr52 and Tyr73 in phospholipase A2.

In the active centre of pancreatic phospholipase A2 His48 is at hydrogen-bonding distance to Asp99. This Asp-His couple is assumed to act together with a water molecule as a catalytic triad. Asp99 is also linked via an extended hydrogen bonding system to the side chains of Tyr52 and Tyr73. To probe the function of the fully conserved Asp99, Tyr52 and Tyr73 residues in phospholipase A2, the Asp9...

متن کامل

The Influence of Cation-π Interactions on the Strength and Nature of Intramolecular O...H Hydrogen Bond in Orthohydroxy Benzaldehyde Compound

The influence of cation-π interactions on the strength and nature of intramolecular O...H hydrogen bond has been investigated by quantum chemical calculations in orthohydroxy benzaldehyde (HBA) compound. Ab initio calculations have been performed at MP2/6-311++G** level of theory. Vibrational frequencies and physical properties such as chemical potential and chemical hardness of these compounds...

متن کامل

Unusual four-bond secondary H/D isotope effect supports a short-strong hydrogen bond between phospholipase A2 and a transition state analogue inhibitor.

A prominent secondary four-bond hydrogen/deuterium isotope effect was observed from proton NMR at the active site histidine imidazole ring of bovine pancreatic sPLA(2) in the presence of a phosphonate transition state analogue. The cross-modulation of H(epsilon2)/H48 and H(delta1)/H48 resonances was confirmed by line shape simulation that follows the McConnell equation with fractionation factor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 88 20  شماره 

صفحات  -

تاریخ انتشار 1991